The Extention Basin as a Storm Water Control Device

By: Ralph G. Mastromonaco, P.E., President

Ralph G. Mastromonaco, P.E., P.C. Consulting Engineers Croton-on-Hudson, NY 10520

August 31, 2000

Abstract

This paper proposes an integrated approach to storm water management and storm water treatment. Today's requirements for capturing and treating the first-flush of storm water can be met with a new device that also controls peak flows over a wide range of storms and uses a net storage volume that is substantially lower than the storage computed by traditional reservoir routing methods.

The extention basin debuts here as the most efficient method of reducing peak storm water flows—being far more effective than the retention or detention basins in common use today.

Background—Storm Water Management

The most effective, and possibly the only device for simply reducing or controlling storm water peak flow, is the storage basin—commonly known as a retention or detention basin. The term detention basin has come to be distinguished from a retention basin in that the latter is a storage device that has a normal pool of water such as a lake, pond or reservoir, while the detention basin is considered dedicated to its task and is normally empty. Both of these operate by the natural accumulation of storm water when a restriction, such as a weir or orifice, is placed on the flow.

These storage basins are typically used to mitigate storm water increases due to land development and are very effective when designed properly. For example, in a small watershed of 5 acres, for a shopping center that converts an existing wooded site to a land use consisting of pavement, the peak storm water flows can rise from 10 cfs to 20 cfs rather easily. In larger watersheds, proportional increases such as these could cause serious flooding and environmental damage.

The key criterion in storm water management is the limitation of after-development peak flows to rates equal to or less than the peak flows prior to development. In the example above, the developer of the shopping center would need to provide a storage basin to limit the after-development peak flows to 10 cfs. The developer may then need to provide substantial water quality treatment storage. Of course, the storage basin would occupy a significant portion of the site, typically ranging from five (5) to fifteen (15) per cent or more of the development land area.

Many state and local municipalities normally require either control of storm water through written codes or insist on peak flow controls during the approval process. Whether or not storm water control is required, it is usually prudent to control storm water flows that are destined for off-site areas, merely to reduce the liability for damages in case of downstream flooding.

Background—Storm Water Treatment

The treatment of storm water to improve water quality has gained considerable interest. Federal and state regulations now require storm water treatment for large sites and new Federal NPDES rules will require treatment from small sites. Further, some local municipal codes or environmental concerns mandate some form of storm water treatment for all sites.

A key criterion of storm water treatment is the capture of the first one-half (1/2) inch of runoff from newly disturbed areas within the watershed. The great majority of pollutants from runoff are contained in the first-flush. To treat the first-flush, the flows must be conveyed to specially designed water quality treatment basins where a variety of treatment processes take place, culminating with infiltration to the soil and/or evaporation. The water quality basins are designed particularly to capture only the first-flush of runoff, and to avoid the later segments of the runoff that would mix with and wash out the captured flow.

Our firm developed a simple design for a first-flush control device in 1990 that we have been using since on various engineering projects. Essentially, the control works on a hydraulic balancing principle – diverting the low flows to a water quality basin and then directing flows back to the drainage system when the water quality basin is full. The water quality basin is designed to store water for just a few days since an empty basin is necessary at the time of rainfall to fulfill the goal of water quality treatment.

Storm Water Storage Basin Theory

The method of computation used to design storm water storage systems is the straightforward and familiar application of conservation of mass principles—the volume flowing out is equal to the volume flowing into a system. This is known as the reservoir routing method, and a wide range of information is available on the subject in engineering and hydrology texts. A brief summation of the method is given here, as follows:

It is assumed for the numerical solution, that we are given the flow "Q" at every time interval "t", being the series, Qin(t).

Given: Vol (out) = Vol (in):

If a volume is allowed to accumulate (S), the modified mass equation accounts for this as follows:

Vol (out) = Vol (in) - S

In a time interval t: Since: And, since: Substituting	Vol(out)/ Δt = Vol(in)/ Δt – $\Delta S/\Delta t$ Vol(out)/ Δt = Qout(t) Vol(in)/ Δt = Qin(t) and Qout(t) = Qin(t) – $\Delta S/\Delta t$	$\Delta S = S(t)$	
Rearranging:	$S(t) = (Qin(t) - Qout(t)) \times \Delta t$		(Eq. 1)

As described in words, the change in volume of storage within any time interval is equal to the rate of inflow in minus the rate of outflow, multiplied by the interval of time.

The Extention Basin as a Storm Water Control Device R. G. Mastromonaco, P.E.

The outflow of a storage basin can be modeled by a non-linear hydraulic function, "g" relating head, or height (stage) "H" in the basin, and various physical characteristics of the control device; e.g., length of a weir or diameter of a pipe, referred to as the set "n", and generally a constant "C".

For example: Qout = $C \times g(n, H)$ (Eq. 2)

If the outflow of a storm water storage basin is restricted by a weir, the outflow function is as follows:

Q=C x L x H^	3/2 or	Qout(t)=C x L x H(t)^ $3/2$
Where:	C is a factor (3.337) L is the weir length (ft)	H is the flood stage in the basin in feet and H(t) is the height at any time

Further, there is a natural geometric relationship, or function "f" between height "H" and the volume "S" in the storage basin. This is often a tabular relationship between contour elevation and surface area that can readily be interpolated for storage volume at any height.

For example:	H =f(S) or	H(t)=f(S(t))	(Eq. 3)

Equations 1, 2 and 3, above fully define the mathematics of the storage process that occurs in a detention or retention basin. The equations are easily solved by iterative techniques. The mathematical method is generally referred to by the generic term, reservoir routing, and it describes a relationship between inflow and outflow that can be seen graphically below:

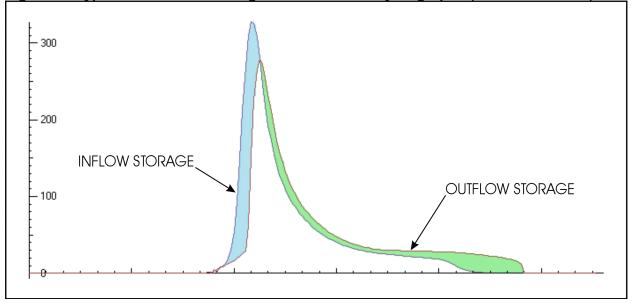
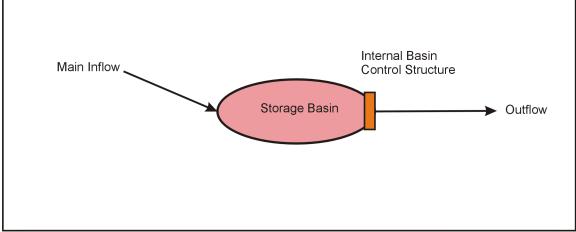
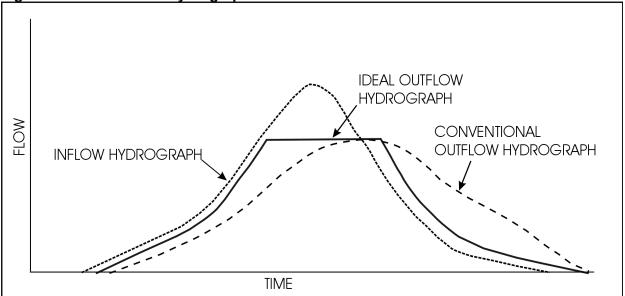



Figure 1: Typical Reservoir Routing Inflow / Outflow Hydrographs (flow versus time)

It is important to note that the area between the inflow and outflow hydrograph is the exact equivalent of the storage volume reached in the storm water basin. Further, in the descending phase of the inflow, the area representing the outflow volume leaving the storage system is the same as the inflow volume, unless some volume is captured within the system.

The hydrographs in Figure 1 represent the flow in and out of a typical storage basin whose flow paths are represented by the figure below:



The Simple Extention Basin

To absolutely minimize the amount of storage volume needed, one must allow the outflow hydrograph to closely track the rise in the inflow hydrograph until a pre-determined flow is reached. In theory, the most efficient storage basin—one with the least storage for the same flow reduction, is one whose outflow follows this non-continuous route, as shown below:

Figure 3: Ideal Outflow Hydrograph

Such an outflow function is difficult to replicate using standard reservoir routing, though it can be provided by using mechanical intervention. For example, to restrict outflows to, say 100 cfs, an operator can be stationed at a valve in the system. The operator would know when to open the valve and divert flows away or towards the design point.

This mechanical system is not acceptable in practice for a variety of reasons, least of which is the reliance on mechanical means in perpetuity as well as the monitoring of rainfall and runoff rates. Clearly, a fully non-mechanical method of performing the same task is our goal.

The extention basin provides such an automatic function. It operates hydraulically and nonmechanically, by allowing the storm flow to bypass the storage basin during the ascending part of the storm then diverts flow into the storage basin only during the period of peak inflow. The extention basin provides flow reductions through external control structures and external piping, and extends the functionality of the storage basin by adding water quality treatment, hence the given name.

A flow schematic of a simple extention basin operation follows:

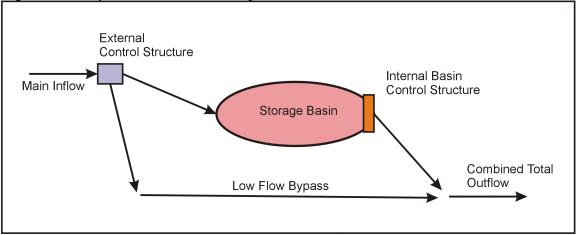
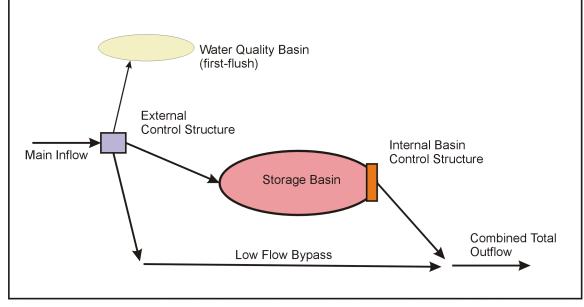


Figure 4: Simple Extention Basin System Flow Path

Operation of the Simple Extention Basin


A simple extention basin will control peak flows over a narrow range of storm frequencies. The following is a narrative of the operation and components of the simple extention basin.

- 1. Inflows are directed to the external control structure that is comprised of a low-level pipe outlet and a high level, diverting weir. The low flows bypass the storage basin in the bypass piping and are conveyed to a junction point.
- 2. At a calculated high-level flow, the diverting weir develops enough head to discharge to the storage basin. Generally, the diverting weir is long to allow a rapid flooding into the storage basin.
- 3. At mid-level to high-level flows, the storage basin takes the bulk of the main flow with some limited bypass continuing in the low flow piping.
- 4. The outflow of the storage basin, as controlled by the internal control structure, a weir, pipe or combinations, joins with the low flow bypass to produce a combined total outflow at the design point.

Operation of the Extention Basin with Storm Water Treatment

A water quality feature is added to the flow path by simply permitting the first low flows, up to the volume of inflow equal to the first-flush, to enter the water quality basin. When the desired level in the water quality basin is reached, further flow is inhibited due to the backwater effect from the developed head in the water quality basin. Hence, the operation is similar to the simple extention basin noted above, except additional storage is added for water quality treatment.

An advanced layout places an additional control structure on the low flow bypass, as illustrated below:

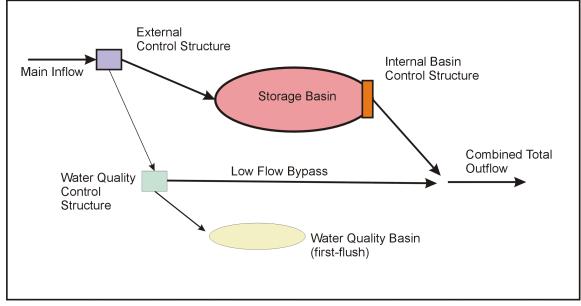


Figure 5-2: Extention Basin System Flow Path with Storm Water Treatment

Sample Computations for the Extention Basin

A numerical proof of the improved operation of the extention basin can be provided based on the earlier equations or by a simple inspection of the nature of the inflow and ideal outflow hydrograph. A practical proof is easily provided by modeling the extention basin using a variety of sample cases and computing the results using readily available software.

While there are a number of software products that can be used to model the flows through the extention basin system, we have used the Army Corps of Engineers HEC-1 program here. The HEC-1 software allows a number of the necessary and detailed hydraulic techniques.

For example, the development of separate hydrographs is needed for the low flow bypass and the inflow to the storage basin. HEC-1 can create these hydrographs using the diversion card (HEC-1 was written in FORTRAN and uses card style input). Further, in the plan with storm water treatment, the diversion cards can also be used to track the filling of the water quality basin and the subsequent re-diversion to the low flow bypass.

Of course, HEC-1 provides hydrograph creation based on watershed characteristics of curve number, lag time and area, as well as hydrograph summation and basic graphing functions.

Since the design of the extention basin is most practical by trial and error or iteration, we have developed a new Windows [™] interface to HEC-1 that greatly improves the program functionality and allows numerous trial runs to fine-tune the proposed hydraulic system design. It is necessary to adjust the diversion ratios; internal control structure dimensions and storage basin until the desired final design flows are met.

Description of the Sample Cases

To test our theory that the extention basin requires minimal storage while providing the required capture of the first-flush runoff, we have created a sample watershed system that undergoes development.

We assume the watershed is mildly developed in the present state with a composite SCS runoff curve number of 70.75.

We further assume that a large, new development site of about 0.20 square mile (125 acres) is contemplated, which would convert a portion of the wooded land use to essentially, all impervious areas, resulting in a new, composite curve number of 73.75.

The breakdown of existing and proposed land uses that comprise the SCS curve number is shown in Table A below:

Existing Condition			
Land Use	Curve Number	Area	Product
Woods	70	0.950	66.500
Industrial	85	0.050	4.250
Total	70.75	1.000	70.750
Proposed Condition			
Land Use	Curve Number	Area	Product
Woods	70	0.750	52.500
Industrial	85	0.050	4.250
New Industrial	85	0.200	17.000
Total	73.75	1.000	73.750

Table A:	Computation	of Composite	SCS	Curve Number
----------	-------------	--------------	-----	--------------

First-Flush of Runoff:

Since the base criterion for storm water treatment is the capture of the first-flush of runoff from the newly disturbed area, the volume of capture is computed to be 5.33 acre feet from 0.200 square miles, $(0.5"/12 \times 0.200 \times 640 \text{ ac/sm})$.

The first-flush flow does not directly re-enter the drainage system—it is infiltrated to the soil, evaporated, or slowly drained back to the drainage system over a period of days at rates well below design storm frequencies.

First-flush capture for storm water treatment is generally additive to any storage required by the peak flow control system. In other words, if 9 acre-feet are required for storm water management, one must add the additional 5.33 acre-feet regardless of the method of storm water storage. In a conventional storage system it is impossible to use the storage required for water quality to offset the storage required for peak flow control without greatly over sizing the system, because the first-flush volume accumulates well before the time of peak runoff. In some limited applications, it is possible to offset the storage required for peak flow reduction in very small storms, when runoff is near to one-half $\binom{1}{2}$ inch.

We seek a solution where the storage required for water quality can be credited fully in the process of storm water management and peak flow reductions.

Watershed Lag:

For simplicity, we have assumed that the watershed lag is 1.0 hour. This is certainly in the order of magnitude of the watershed size of 1 square mile. In general, the analysis herein can be done with any assumed value of lag. To simplify comparisons, we further assume that the lag time remains the same in both the existing and proposed case, and is possible when the new development is not on the flow path where lag time might be measured. If a new situation develops where the lag changes in the proposed condition, adjustment to the model can be made, easily.

Rainfall:

For simplicity, we have chosen 4.0 inches of rainfall as the design storm. This is a mid-range value since design storms range from 3.2 inches up to 7.2 inches, depending on the application. The analysis herein can be run with any design storm. To be consistent, the same rainfall is assumed in both the existing and proposed condition.

The rainfall distribution is assumed as the SCS 24 hour, with Type 3 rainfall distribution and Type 2 antecedent moisture conditions. We have provided the synthetic rainfall ordinates in the computer input card file based on values commonly in use in our local area.

Control Structures:

The control structures are necessary to either divert or retard flow. In the storage basin, they are composed of a low-level pipe or orifice, a mid-level spillway weir and a high level weir to control overtopping. All elevations used are relative, and it assumed the designer would use proper techniques to design individual components.

Diversion control structures are devices that split flows according to certain, desired proportions. This is accomplished with weirs or notches that direct flows to different directions.

Peak Flow Reduction:

Each sample case assumes that the watershed flow must be reduced to 278 cfs for the design storm. This is the peak flow of the watershed at existing conditions. To compare methods, the storage volume necessary to produce this reduction is compiled for each case.

The following sample watershed characteristics are used to determine the inflow hydrographs.

Item	Existing Condition	Proposed Condition	Units
Watershed Area	1.0	1.0	square miles
Watershed Lag Time	1.0	1.0	hours
SCS Runoff Curve Number	70.75	73.75	(no units)
Rainfall	4.0	4.0	inches
Rainfall Hydrograph	SCS Type 3 – 24 hr.	SCS Type 3 – 24 hr.	0.1 hour inc.
Initial Abstraction	Computed Internally	Computed Internally	inches
Base Flow	0	0	cfs

Table B: Sample Watershed Characteristics

Sample Case 1A – Existing Conditions

This case assumes a watershed without development. It is provided to illustrate actual conditions in a typical situation, with nominal values that may be encountered by design engineers.

Based on the sample input data, the following are the results of the computations:

Table 1-A: Results of Sample Case 1A – Existing Conditions

Peak Flow	278 c.f.s
Time of Peak Flow	13.17 hours

Sample Case 1B – Proposed Conditions without Control in Storage Basins

In this case, we model the peak flows after development, where flows are left uncontrolled. The change in development is modeled by simply increasing the SCS runoff curve number of the undeveloped case, based on the addition of 125 acres of impervious area in the watershed. The remaining watershed characteristics are assumed to be unchanged by the development.

Table 2-A: Results of Sample Case 1B – Proposed Conditions

Peak Flow	328 cfs
Time of Peak Flow	13.00 hours

Sample Case 2A – Control of Flows using the Conventional Detention Basin without Water Quality Storage

In this case, the after development flows are routed through a conventional detention basin system using reservoir routing techniques. The characteristics of the detention basin are as follows:

Table 2-C: Storage Volume versus Elevation / Surface Area – Conventional Detention Basin Particular Area – Conventional Detention

Elevation (feet)	Surface Area (acres)	Volume (acre-feet)
340	0	0.000
342	0.87	0.553
344	2.17	3.448
346	2.45	8.065
348	2.74	13.253
350	3.04	19.030
352	3.36	25.427

Figure 6: Case 2A – Inflow and Outflow Routing using a Conventional Detention Basin

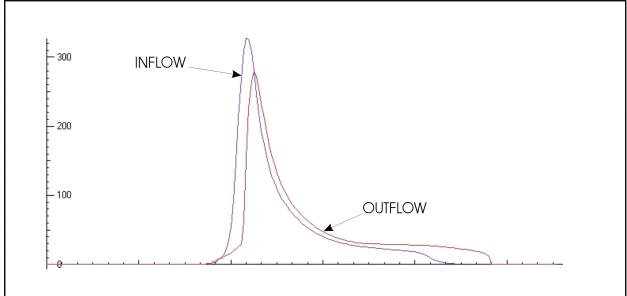


 Table 2-D:
 Results of Sample Case 2A Proposed Conditions / Conventional Detention

 Basin without Water Quality Storage

Peak Inflow	328 cfs
Peak Outflow	278 cfs
Time of Peak Flow	13.50 hours
Peak Height in Basin	349.43 feet
Volume of Storage	17 acre-feet

Sample Case 2B – Control of Flows using the Conventional Detention Basin and Water Quality Storage

In this case, we attempt to control peak flows and provide the required water quality storage volume. The water quality basin is fed by a diversion of the main watershed flow until the value of 5.33 acre-feet is reached, thereafter, the remaining flow is detained in a conventional storage basin.

The flow path of this case is illustrated below:

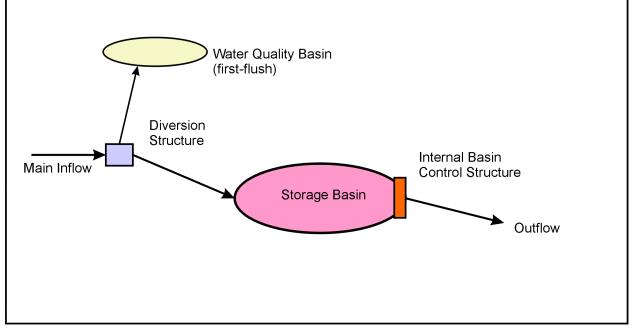
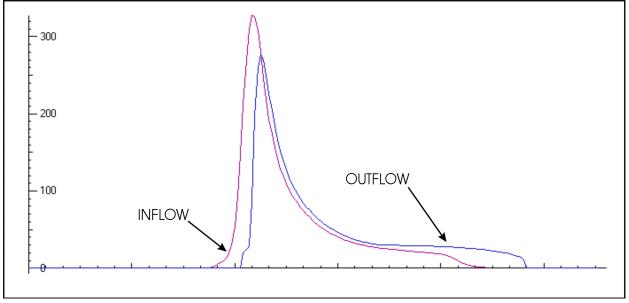



 Table 2E: Results of Sample Case 2B Proposed Conditions – Conventional Peak Flow

 Storage and Water Quality Storage

	0
Peak Inflow	328 cfs
Peak Outflow	278 cfs
Time of Peak Flow	13.50
Peak Height in Basin	348.85
Volume of Storage	16.0 acre-feet
Volume of WQ Storage	5.33 acre-feet
Volume of Storage	16.0 acre-feet

Figure 8: Inflow / Outflow of Conventional Detention with Water Quality Storage (4 in. rainfall)

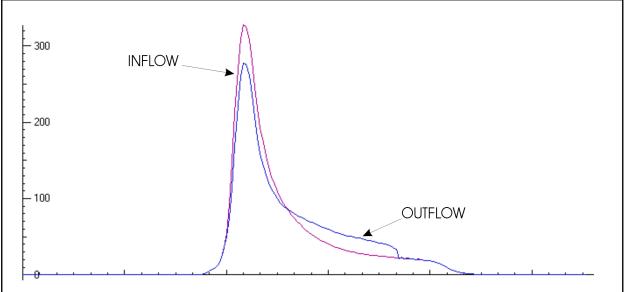
Sample Case 3 – Control of Flows using the Simple Extention Basin

In this case, the after development flows are routed through the simple extention basin system with a portion of the flow diverted to a water quality basin. The diversions are set according to the following relationships:

Table 3-A:	Diversion Sch	hedules for Case 3	
------------	----------------------	--------------------	--

Inflow (cfs)	0	10	20	50	80	100	180	300
Divert to Design Point (cfs)	0	10	20	40	55	65	120	230
Remaining Flow to Storage Basin (cfs)	0	0	0	10	25	35	60	70

The volume characteristics of the storage basin are as follows:


Table 3-B: Storage Volume versus Surface Area / Elevation – Simple Extention Basin

Elevation (feet)	Surface Area (acres)	Volume (acre-feet)
340	0	0.000
342	0.87	0.553
344	2.17	3.448
346	2.45	8.065
348	2.74	13.253
350	3.04	19.030
352	3.36	25.427

Table 3-B: Results of Sample Case 3 Proposed Conditions / Simple Extention Basin

Peak Inflow	328 cfs
Peak Flow	278 cfs
Time of Peak Flow	13.00
Peak Height in Basin	346.19
Volume of Storage	9.0 acre-feet
Volume of Water Quality Storage	5.33 acre-feet

Discussion: Simple Extention Basin

In sample case 2A, we used a conventional detention basin computation that brought the peak flow from 328 cfs to 278 cfs and required 17 acre-feet of storage. In contrast, sample cases 3 and 4 provide clear proof that the simple extention basin can provide the same reduction in peak flows with about one-half the storage (9.0 acre-feet).

In a variation of Sample Case 2, Sample Case 2B adds 5.33 acre-feet of water quality storage to the required peak flow storage requirement of 16 acre-feet, totaling 21.33 acre-feet. This variation in Case 2 was provided here, to assess if simply adding first-flush storage alone is effective in reducing peak flows. The results indicate it was only slightly effective, reducing the net required storage by about 5 per cent (22.33 to 21.33 ac-ft). For comparison purposes, the simple extention basin in Case 3 required only 9 acre-feet of storage plus the required 5.33 acre-feet, for 14.33 acre-feet, total.

This remarkable result is evident graphically (Fig. 9)—the outflow hydrograph follows the rising limb of the inflow hydrograph and the need for storage is minimized accordingly.

However, the practical need of storm water management is to control flows over a range of storms, say, from the 2 year to the 100-year storm event. The simple extention basin would not be able to control flows much lower than its design because its inherent bypass system allows low flows out to the design point without control. It is, however, the most effective system to control a small, well-defined range of storm frequencies.

Given the need to capture the first flush, and remembering that the first-flush capture basin is really only effective in reducing peak flows when the main flows are small, we can integrate the storm water control and water quality control in our highly effective, extention basin. This is illustrated in Sample Case 4, below:

Sample Case 4 – Control of Flows using the Extention Basin and Storm Water Treatment

In our final Sample Case 4, a water quality basin is added to the extention basin system and we attempt to control a wide range of storm frequencies. Flows are diverted to the water quality basin until the pre-computed first-flush volume of ½ inch of runoff over the newly developed portion of the watershed is reached.

A portion of the flow is conveyed to the water quality basin by imposing a new diversion control structure on the low flow bypass of the simple extention basin. The lowest flows are directed to the water quality basin, thereafter, when the basin is full, flows are naturally re-directed to the final design point by the principle of hydraulic balancing.

Our sample case requires that 5.33 acre-feet of first-flush runoff be stored in the water quality basin. This value is placed in field 2 of the DT input card file of our HEC-1 model.

Most importantly, this case examines a range of flows from 1.84 inches of rainfall, to 4.0 inches of rainfall. This is accomplished in HEC-1 by creating 6 plans as evidenced by the JR multiratio card. The ratios of each plan range from 0.46 to 1.00 and operate in HEC-1 by re-computing the entire model for each ratio times the design rainfall of 4.0 inches on the PB card.

For Case 4, we have assumed that the 100-year storm is 4.0 inches of rainfall in 24 hours, and have provided rainfalls for the 2, 5, 10, 25 and 50-year storms by the multiratio plans. In fact, 100-year storms are closer to 7 inches of rainfall in the northeast; however, we use the lower value to maintain consistency with our goal of using mid-range flows whenever possible in the sample cases. Any reasonable value of rainfall can be used to compare the effectiveness of the extention basin to the detention basin since the computations are always relative.

The following are the steps in the final computation over a range of flows:

Elevation (feet)	Surface Area (acres)	Volume (acre-feet)
340	0	0.000
342	0.87	0.553
344	2.17	3.448
346	2.45	8.065
348	2.74	13.253
350	3.04	19.030
352	3.36	25.427

Table 4-A: Storage Volume versus Elevation – Extention Basin

Table 4-B: Storage Volume versus Elevation – Water Quality Basin

Elevation	Surface Area	Volume				
(feet)	(acres)	(acre-feet)				
340	0.00	0.00				
342	0.20	0.13				
344	0.53	0.83				
346	1.06	2.39				
348	1.93	5.33				

Table 4-C: Diversion Schedules for Case 4

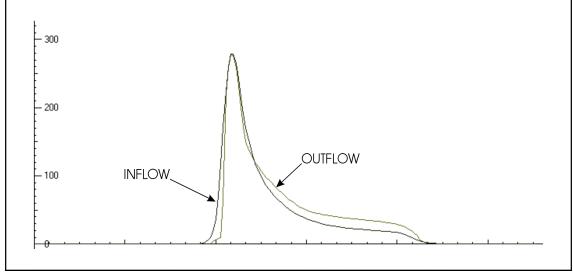
Inflow (cfs)	0	10	20	50	80	100	180	300
Divert to Design Point (cfs)	0	10	20	40	55	65	120	237
Remaining Flow to Storage Basin (cfs)	0	0	0	10	25	35	60	63

Table 4-D: Computation of First Flush Volume Required:

New Impervious Disturbed Area	125	acres
Rainfall to be Captured	0.5	inches
Computed Volume to be Captured	5.33	acre-feet

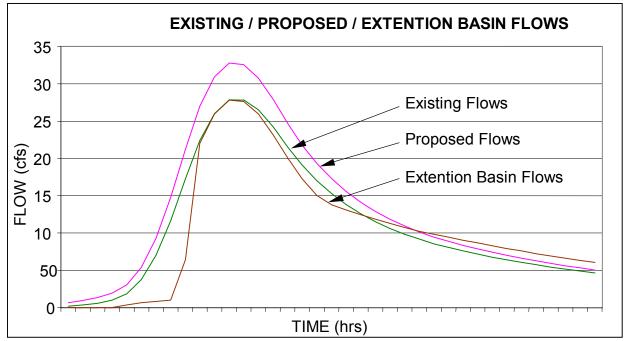
Table 4-E: Sample Case 4 - Summary of Peak Flows by Storm Frequency

Storm Frequency (year)	Existing Flow (cfs)	Proposed Inflow (cfs)	Extention Basin Outflow (cfs)
100	278	328	278
50	209	251	203
25	161	198	151
10	111	144	107
5	72	99	72
2	27	42	24


Discussion of the Extention Basin:

It is clear from the summary Table 4-E, that the extention basin system has reduced peak flows to almost match the original flows, and more importantly, it has done this over a wide range of flows.

For example, the 100-year storm runoff is 278 cfs both in the existing and proposed cases, even though the development in the watershed has increased to flows 328 cfs. The 2-year storm has been reduced from the proposed flow of 42 to 24 cfs—slightly below the existing peak flow of 27 cfs.


The graph of the results of the existing flows as compared to the final flows is indicated below:

A close-up comparison of the final results along with the proposed, after-development inflows for the 100-year storm is shown on the graph below:

In Figure 11, the existing hydrograph is nearly identical to the extention basin outflows when comparing both peak time and hydrograph shape. It is immediately apparent from the graphs that the extention basin accomplishes an additional task of limiting the lag in the peak outflow.

The reduction of outflow lag is an added, environmental benefit of the extention basin since any natural drainage system is less likely to be affected by the change in timing. Further, we have eliminated unknown flooding affects associated with timing of peak flows from other watersheds.

Sample Case Summary:

Each sample case performed the task of reducing the after development peak flow from 328 cfs to the design peak flow of 278 cfs using a storage basin. The conventional storage basin system using standard reservoir routing techniques computed the storage at 17 acre-feet (16 acre-feet for case 2B), to these values we must add 5.33 acre feet required for first-flush storage.

The extention basin performed very much better, requiring only 9 acre feet of storage to control peak flows and 5.33 acre feet for storm water treatment for a total storage of 14.33 acre-feet.

The Table below summarizes the storage required for each sample case.

Sample Case	Description	Storage Volume for Peak Flow Control (acre-feet)	Storage Volume for Water Quality Treatment (acre-feet)	Total Storage Volume Required (acre-feet)
1-A	Existing Conditions	n.a.	n.a.	n.a.
1-B	After Development Conditions	n.a.	n.a.	n.a.
2-A	Conventional Detention Basin – No Water Quality Treatment	17	n.a.	n.a.
2-B	Conventional Detention Basin w/ Water Quality Treatment	16	5.33	21.33
3 and 4	Extention Basin w/ Water Quality Treatment	9.0	5.33	14.33

 Table 5: Comparison of Storage Requirements for the Sample Cases

Table 6: Summary of Peak Flows and Peak Time versus Storm Frequency for each Sample Case

Sample		Storm Frequency (years)												
Case	100	50	25	5	2									
	Peak Flows (cfs) / Peak Time (hrs) (increased flows are red light shaded)													
1-A	278/13.17	209/13.17	161/13.17	111/13.17	72/13.17	27/13.33								
1-B	328/13.00	251/13.00	198/13.17	144/13.17	99/13.17	42/13.33								
2-A	278/13.00	20813.17	158/13.17	114/13.17	81/13.17	42/13.33								
2-B	278/13.50	197/13.67	139/13.83	80/14.33	36/15.50	22/15.50								
3	278/13.00	208/13.17	158/13.17	114/13.17	81/13.17	42/13.33								
4	278/13.00	203/13.17	151/13.17	107/13.17	72/13.50	24/14.83								

Conclusion:

The extention basin provides the control of peak flows using less storage than a conventional retention or detention basin. This phenomenon occurs because we have found a method to "tune" the system to minimize the storage requirement.

The extention basin described in our sample case requires only about 67% of the storage of a conventional storage basin where water quality treatment is also required (Case 3 vs. Case 2-B), and controls flows over a very wide range of storm frequencies.

Similarly, when control is required over only a small range of storm frequencies and water quality treatment is not needed, the simple extention basin requires only about 50% of the storage of a conventional storage basin (Case 2A - 100, 50, 25 year storm).

When the capture of the first-flush of storm water is required for water quality treatment and control of peak flows is required over a wide range of storm frequencies, the storage volume can be minimized by the use of an extention basin that uses storage volumes close to the theoretical minimum storage volume (Case 4).

Based on the theory involved, much greater savings in storage volume can be achieved than we have reported here. The actual savings would be dependent on the shape of the inflow hydrograph and the designer's ability to shape the outflow hydrograph using strategic diversions.

The technique for computing these detailed volumes is straightforward—and can be computed by trial and error methods. Since the expected savings of up to 50% in storage is so great, the additional design time required to fine-tune the computations using successive iteration is well worth the effort.

References:

- 1. U.S. Army Corps of Engineers HEC-1 Flood Hydrograph Package, Users Manual, September 1981, The Hydrologic Engineering Center, 609 Second Street, Davis, California 95616
- 2. U.S. Army Corps of Engineers HEC-1 Computer Program
- 3. Urban Hydrology for Small Watersheds, USDA, Soil Conservation Service, Technical Release 55 June 1986
- 4. RGM HEC 2000 Computer Program

Appendix:

The following pages include shortened printouts of the HEC-1 computer program for each of the Sample cases. The printouts have been edited to reduce blank lines, headers, and repetitive or non-essential matter that accompany the HEC-1 program output.

The input cards have not been edited, therefore, the sample input data can be used independently to test or reproduce these results.

Cases 1 A and B

						HEC-1							PAGE	1
	LINE	ID	1.		3	4	5	6.	7.	8	9	10		
	1					P.E., P								
	2 3	ID (IO	CASE 17 5		1B - 1	EXISTING	AND PROI	POSED CON	NDITION N	IO CONTRO	JL			
	5	*DIA		5										
	4	IT	10			200			2000					
	5	IN IN	6 BEFORE		000									
	7			DEVELOP	MENT									
	8	KO	5				21							
	9	PB	4											
	10 11					0.00400								
	12					0.02412								
	13					0.03547								
	14					0.04832								
	15 16					0.06267								
	17					0.09930								
	18					0.12532								
	19 20					0.16167 0.21052								
	20					0.21052								
	22	PC	.58400	0.62670	0.66060	0.68570	0.70200	0.71344	0.72396	0.73356	0.74224	0.75000		
	23					0.77728								
	24 25					0.82968								
	26					0.89600								
	27					0.91750								
	28 29					0.93428								
	30					0.94893								
	31					0.97410								
	32					0.98496								
	33 34	PC BA	.99189	0.99284	0.99377	0.99470	0.99561	0.99651	0.99740	0.99828	0.99914	1.00000		
	35	LS	Ţ	70.75										
	36	UD	1											
	37 38	KK	AFTER											
	39	KM A BA	AFTER I 1	DEVELOPM	5 IN 1									
	40	LS		73.75										
	41	UD	1											
	42 SCHEMATI	ZZ C DIA	CRAM OF	- STREAM	NETWORK									
INPUT	SCHERATI	C DIA	GIAN OI	SINDAM	INE I WORK									
LINE	(V) ROUTING		(->) DIVE	RSION OR	PUMP FLO	WC							
NO.	(.) CONNECTOR		(<) RETUR	RN OF DI	VERTED OF	R PUMPED	FLOW						
6	BEFORE													
	•													
37		AFTER												
						E., P.C.								
		CASI	E IA +	CASE IB	- EXI	STING ANI RI	J PROPOSI JNOFF SUI		FION NO C	ONTROL				
					F	LOW IN CU			COND					
					TIME	IN HOURS	B, AREA	IN SQUAR	RE MILES					
				PEAK	TIME O	F AVI	RAGE FLO	OW FOR MA	AXIMUM PR	RIOD	BASIN	MAXIMU	м	TIME OF
	OPERATION	STAT	ION	FLOW	PEAK		111101 111				AREA	STAGE		MAX STAGE
+						6-	HOUR	24-HOUH	र 72 -	HOUR				
	HYDROGRAPH AT													
+		BEF	ORE	278.	13.17		119.	37.		27.	1.00			
+	HYDROGRAPH AT	AF	TER	328.	13.00		137.	42.		31.	1.00			

*** NORMAL END OF HEC-1 ***

Case 2 A

						UEC 1	TNDUE						CF 1
LI	NE	ID.	1.	2		HEC-1		6.	7 .	8	9		GE 1
	1	ID	RALPH G	. MASTR	OMONACO,	P.E., P	.C E	XTENTION	BASIN RE	ESEARCH			
		ID IO	CASE 2	- AFTE: 2		PMENT -	CONVENT	IONAL DET	FENTION E	BASIN			
			AGRAM	2									
		ΙT	10			200			2000				
		IN KK	6 Matn		000								
		KO	5	5			21						
	8	KM	WATERSH	ED 1									
		PB	4		0 00000	0 00400	0 00500	0 00000	0 00700		0 00000	0.01000	
								0.00600					
		PC						0.02627					
		PC						0.03792					
								0.05107 0.06572					
								0.08250					
								0.10400					
								0.13167					
								0.17032					
								0.31430					
								0.71344					
								0.78948 0.83833					
								0.87468					
								0.90070					
								0.92120					
								0.95168					
		PC	.95829	0.95958	0.96085	0.96211	0.96336	0.96460	0.96582	0.96704	0.96824	0.96944	
								0.97636 0.98700					
								0.98700					
		BA	1	0.00201	0.00077	0.001/0	0.00001	0.00001	0.00,10	0.00020	0.00011	1.00000	
		LS		73.75									
		UD KK	1 OUTFLW										
		KO	5	5			21						
		RS	1	ELEV									
		SA SE	0 340	0.83 342	2.17 344	2.45 346	2.74 348		3.36 352				
		SL	340	2.4	.61	.5	240	300	552				
	43	SS	346.5	14.5	3.337	1.5							
		ST	351	10	3.1	1.5							
	45 SCHEMATIC	ZZ DTA	AGRAM OF	STREAM	NETWORK								
INPUT													
	V) ROUTING				RSION OR								
NO. (.) CONNECTOR MAIN		(<	-) RETU	RN OF DIV	ERTED OF	K PUMPED	F.TOM					
-	V												
27 0	V												
37 O (***) RUNOFF .	UTFLW ALSO COMPUTED) AT	THIS LC	CATION									
							JNOFF SU						
	RATION	0.00.2	FION	PEAK	TIME OF	F AVI	ERAGE FL	OW FOR MA	AXIMUM PE	ERIOD	BASIN	MAXIMUM	TIME OF MAX STAGE
+ OPE.	RATION	STA:	LION	FLOW	PEAK	6-	-HOUR	24-HOUF	r 72-	HOUR	AREA	STAGE	MAX STAGE
HYD	ROGRAPH AT												
+		1	MAIN	328.	13.00		137.	42.		31.	1.00		
+	TED TO	OU	FFLW	278.	13.50		119.	43.		31.	1.00		
+												349.43	13.50
1								ANALYSIS P USED I					
PLAN 1			(1 101/0	SHOWIN A.				LLWAY CRE		CEACH FO			
				ATION		10.00		346.50		351.0	0		
			STOR OUTF			0. 0.		9. 30.		22 501			
	RATI	0	MAXIM		MAXIMUM		MUM M	AXIMUM			IME OF	TIME OF	
	OF	,	RESERV	OIR	DEPTH	STOR	AGE O	UTFLOW	OVER TO	DP MAX		FAILURE	
	PMF	,	W.S.E	LEV	OVER DAM	AC-1	FT	CFS	HOURS		HOURS	HOURS	
	1.00)	349.	43	0.00	:	17.	278.	0.00		13.50	0.00	
יי זגאס∩אַז יי	ND OF HEC-1 *	**											

*** NORMAL END OF HEC-1 ***

Case 2 B

LIN	1	тD				HEC-1	INPUT					
	-				23	4	5				9	910
	2				ROMONACO, DEVELOPMI							
	3	IO	CASE 2			5N1 - C(ONVENTIO	NAL DEIEI	NIION BAS	5 1 11		
			.GRAM									
		ΙT	10			200			2000			
		IN	6 PREC	0.4	000		0 70	0 00	1 0 0			
		JR KK	MAIN	0.46	5 0.60	0.69	0.79	0.88	1.00			
		KO	5	5	5		21					
	9	KM I	WATERSH	HED 1								
1	10	PB	4									
					0.00300							
					0.01300							
					3 0.02307 3 0.03427							
					3 0.04697							
1					8 0.06117							
1	17	PC	.07363	0.07530	0.07703	0.07880	0.08063	0.08250	0.08443	0.08640	0.08843	3 0.09050
					0.09703							
					3 0.12232							
					B 0.15752 B 0.20478							
					4 0.27604							
					0.66060							
		PC	.75718	0.76412	2 0.77082	0.77728	0.78350	0.78948	0.79522	0.80072	0.80598	8 0.81100
					7 0.82518							
					2 0.86498							
					0.89358 0.91558							
					7 0.91558							
					2 0.94753							
3	31				8 0.96085							
					9 0.97295							
					8 0.98392							
		PC BA	.99189	0.99284	4 0.99377	0.99470	0.99561	0.99651	0.99/40	0.99828	0.99914	1.00000
		LS	1	73.75	5							
		UD	1									
3	38	KK (OUTFLW									
		KO	5	5			21					
		RS	1	ELEV								
		SA	0	0.83 342					3.36			
		SE SL	340 340	2.4		.5	348	350	352			
		SS	346.5	14.5								
4	45	ST	351	10		1.5						
4		ΖZ										
INPUT	SCHEMATIC	DIA	GRAM OF	STREAM	4 NETWORK							
	V) ROUTING		(->) DTVI	ERSION OR	PIMP FL	∩w					
	.) CONNECTOR MAIN V				JRN OF DI			FLOW				
7	V											
7	V UTFLW											
7 38 OU		d at	THIS I	OCATION	1							
7 38 OU	UTFLW	d At	THIS I	LOCATION	4			PLIED TO				
7 38 OU ***) RUNOFF	UTFLW			LOCATION PLAN	4	RATIO 1	RATIO	2 RATIO	3 RATIO	0 4 RAT		
7 38 OU (***) RUNOFF DPERATION	UTFLW ALSO COMPUTE STATION				1		RATIO	2 RATIO	3 RATIO	0 4 RAT	10 5 RA 0.88	ATIO 6 1.00
7 38 OU (***) RUNOFF DPERATION	UTFLW ALSO COMPUTE STATION I	Al	REA	PLAN		RATIO 1 0.46	RATIO 0.6	2 RATIO 0 0.0	3 RATIO) 4 RAT .79	0.88	1.00
7 38 OU (***) RUNOFF DPERATION	UTFLW ALSO COMPUTE STATION	Al		PLAN 1 H	FLOW	RATIO 1 0.46 42 .	RATIO 0.6 99	2 RATIO 0 0.0	3 RATIO	0 4 RAT .79	0.88 2 51 .	1.00 328.
7 38 OU (***) RUNOFF DPERATION HYDROGRAPH AT	ALSO COMPUTE STATION F MAIN	AI :	REA 1.00	PLAN 1 H	flow Fime	RATIO 1 0.46	RATIO 0.6 99 13.1	2 RATIO 0 0.0 . 144 7 13.3	3 RATIO 59 0. 4. 19 17 13	98. 17	0.88 251. 3.00	1.00
7 38 OU	UTFLW ALSO COMPUTE STATION I	AI :	REA 1.00	PLAN 1 H	FLOW FIME FLOW	RATIO 1 0.46 42. 13.33 22	RATIO 0.6 99 13.1	2 RATIO 0 0.0 . 144 7 13.3	3 RATIO	0 4 RAT 79 98. : 17 1:	0.88 251. 3.00	1.00 328. 13.00 278
7 38 OU (***) RUNOFF DPERATION HYDROGRAPH AT	ALSO COMPUTE STATION F MAIN	AI :	REA 1.00	PLAN 1 H 1 H	FLOW FIME FLOW FIME	RATIO 1 0.46 42. 13.33 22. 15.00	RATIO 0.6 99 13.1 36 15.5	2 RATIO 0 0.0 . 144 7 13.3	3 RATIO	0 4 RAT 79 98. : 17 1:	0.88 251. 3.00	1.00 328. 13.00 278
7 38 OU (***) RUNOFF DPERATION HYDROGRAPH AT	ALSO COMPUTE STATION F MAIN	AI :	REA 1.00	PLAN 1 H 1 H ** PF	FLOW FIME FLOW FIME EAK STAGE:	RATIO 1 0.46 42. 13.33 22. 15.00 S IN FEE	RATIO 0.6 99 13.1 36 15.5 T **	2 RATIO 0 0.0 7 144 7 13.3 . 80 0 14.3	3 RATIO 59 0. 4. 19 17 13 0. 13 33 13	0 4 RAT .79	0.88 251. 3.00 197. 3.67	1.00 328. 13.00 278. 13.50
7 38 OU (***) RUNOFF DPERATION HYDROGRAPH AT	ALSO COMPUTE STATION F MAIN	AI :	REA 1.00	PLAN 1 H 1 H ** PH 1 S	FLOW FIME FLOW FIME	RATIO 1 0.46 42. 13.33 22. 15.00 S IN FEE 343.57	RATIO 0.6 99 13.1 36 15.5 T ** 346.7	2 RATIO 0 0.0 7 144 7 13.3 . 80 0 14.3	3 RATIC 59 0. 4. 19 17 13 0. 13 33 13 50 348	0 4 RAT 79 98. 1 17 1 1 89. 1 1 18 34 34	251. 3.00 197. 3.67 8.74 3	1.00 328. 13.00 278. 13.50 349.43
7 38 OU (***) RUNOFF OPERATION NYDROGRAPH AT	ALSO COMPUTE STATION F MAIN	AI : :	REA 1.00 1.00 SU	PLAN 1 F 1 F 1 F 1 S JMMARY C	FLOW FIME FLOW FIME EAK STAGE STAGE FIME DF DAM OVI	RATIO 1 0.46 42. 13.33 22. 15.00 S IN FEE: 343.57 15.00 ERTOPPINO	RATIO 0.6 99 13.1 36 15.5 T ** 346.7 15.5 G/BREACH	2 RATIO 0 0.4 7 13.5 0 14.5 3 347.5 0 14.5 ANALYSIS	3 RATIC 59 0. 4. 19 17 13 0. 12 50 348 33 13 50 348 33 13 50 578 577	0 4 RAT .79	0.88 251. 3.00 197. 3.67 8.74 3 3.67 DUTFLW	1.00 328. 13.00 278. 13.50 349.43 13.50
7 38 OU ***) RUNOFF OPERATION NYDROGRAPH AT ROUTED TO	UTFLW ALSO COMPUTE STATION T MAIN OUTFLW	A1 :	REA 1.00 1.00 SU	PLAN 1 F 1 F 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S	FLOW FIME FLOW FIME EAK STAGE STAGE FIME DF DAM OVI ARE FOR II	RATIO 1 0.46 42. 13.33 22. 15.00 S IN FEE: 343.57 15.00 ERTOPPINN NTERNAL 2	RATIO 0.6 99 13.1 36 15.5 T ** 346.7 15.5 G/BREACH TIME STE	2 RATIO 0 0.4 7 13.5 . 80 0 14.5 3 347.5 0 14.5 ANALYSIS P USED 1	3 RATIC 59 0. 4. 19 17 13 0. 12 33 13 50 348 33 13 5 FOR STI DURING BE	0 4 RAT .79 .79	0.88 251. 3.00 197. 3.67 8.74 3 3.67 000000000000000000000000000000000000	1.00 328. 13.00 278. 13.50 349.43 13.50
7 38 OU ***) RUNOFF OPERATION NYDROGRAPH AT ROUTED TO	ALSO COMPUTE STATION F MAIN	A1 :	REA 1.00 1.00 SU (PEAKS	PLAN 1 F 1 F ** PF 1 S JMMARY C SHOWN Z	FLOW FIME FLOW TIME STAGE TIME DF DAM OVI ARE FOR II INITI;	RATIO 1 0.46 42. 13.33 22. 15.00 S IN FEE: 343.57 15.00 ERTOPPING NTERNAL 2 AL VALUE	RATIO 0.6 99 13.1 36 15.5 T ** 346.7 15.5 G/BREACH TIME STE SPI	2 RATIO 0 0.4 7 13.2 0 14.3 3 347.4 0 14.3 ANALYSIS P USED 1 LLWAY CRH	3 RATIC 59 0 4. 19 17 13 0. 12 33 13 50 348 33 13 5 FOR STI DURING BE EST 5	0 4 RAT .79 .79	D.88 251. 3.00 197. 3.67 8.74 3 3.67 3.67 DUTFLW RMATION) AM	1.00 328. 13.00 278. 13.50 349.43 13.50
7 38 OU ***) RUNOFF PERATION YDROGRAPH AT OUTED TO	UTFLW ALSO COMPUTE STATION T MAIN OUTFLW	A1 :	REA 1.00 1.00 (PEAKS ELEV	PLAN 1 F 1 F 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S	FLOW FIME FLOW FIME EAK STAGE STAGE FIME DF DAM OVI ARE FOR II	RATIO 1 0.46 42. 13.33 22. 5.00 S IN FEE: 343.57 15.00 ERTOPPINM NTERNAL 2 AL VALUE 40.00	RATIO 0.6 99 13.1 36 15.5 T ** 346.7 15.5 G/BREACH TIME STE SPI	2 RATIO 0 0.6 . 144 7 13.2 0 14.3 3 347.9 0 14.3 ANALYSIS ANALYSIS P USED I LLWAY CRH 346.50	3 RATIC 59 0. 4. 19 17 13 0. 12 33 13 50 348 33 13 5 FOR STA DURING BE SST 7	0 4 RAT 79 08. 17 1 098. 18 099. 18 099. 18 099 18 099 18 099 18 09 18 0 18 0 18	0.88 251. 3.00 197. 3.67 8.74 3 3.67 9.00TFLW RMATION) AM	1.00 328. 13.00 278. 13.50 349.43 13.50
7 38 OU (***) RUNOFF OPERATION NYDROGRAPH AT ROUTED TO	UTFLW ALSO COMPUTE STATION T MAIN OUTFLW	A1 :	REA 1.00 1.00 (PEAKS ELEV STOF	PLAN 1 F	FLOW FIME FLOW TIME STAGE TIME DF DAM OVI ARE FOR II INITI;	RATIO 1 0.46 42. 13.33 22. 15.00 S IN FEE: 343.57 15.00 ERTOPPINN NTERNAL 2 AL VALUE 40.00 0.	RATIO 0.6 99 13.1 36 15.5 T ** 346.7 15.5 G/BREACH TIME STE SPI	2 RATIO 0 0.6 . 144 7 13.2 0 14.3 3 347.9 0 14.3 ANALYSIS ANALYSIS P USED I LLWAY CRH 346.50	3 RATIC 59 0. 4. 19 17 13 0. 12 33 13 50 348 33 13 5 FOR STA DURING BE SST 7	0 4 RAT .79 .79	0.88 251. 3.00 197. 3.67 8.74 3 3.67 DUTFLW RMATION) 0 0	1.00 328. 13.00 278. 13.50 349.43 13.50
7 38 OU (***) RUNOFF OPERATION HYDROGRAPH AT ROUTED TO	UTFLW ALSO COMPUTE STATION T MAIN OUTFLW	ы : 	REA 1.00 1.00 (PEAKS ELEV STOF OUTF	PLAN 1 F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FLOW FIME FLOW FIME EAR STAGE TIME DF DAM OVI ARE FOR III INITI 3'	RATIO 1 0.46 42. 13.33 22. 15.00 S IN FEE: 343.57 15.00 ERTOPPINN NTERNAL ' AL VALUE 40.00 0. 0.	RATIO 0.6 99 13.1 36 15.5 T ** 346.7 5.5 G/BREACH TIME STE SPI	2 RATIO 0 0.4 7 13.5 0 14.5 0 14.5 3 347.9 0 14.5 ANALYSIS ANALYSIS P USED 1 LLWAY CRH 346.50 9. 30.	3 RATIC 59 0 4. 19 17 13 0. 12 33 13 50 348 33 13 50 348 33 13 50 5 FOR ST DURING BE SST 5	A RAT 779 988. 177 1: 399. 1883 1: 1883 1: 1883 1: 170 10 100 OF D. 351.00 22501	0.88 251. 3.00 197. 3.67 3.67 3.67 DUTFLW RMATION) 0.	1.00 328. 13.00 278. 13.50 349.43 13.50
7 38 OU (***) RUNOFF OPERATION HYDROGRAPH AT ROUTED TO	UTFLW ALSO COMPUTE STATION F MAIN OUTFLW	а : : 	REA 1.00 1.00 (PEAKS ELEV STOF MAXIM	PLAN 1 F 1 F 1 F 1 F 1 S 1 MMARY C SHOWN F JATION AGE FLOW 4UM	FLOW FIME FLOW FIME EAK STAGE: STAGE TIME OF DAM OVI ARE FOR II INITII 3. MAXIMUM	RATIO 1 0.46 42. 13.33 22. 15.00 S IN FEE: 343.57 15.00 ERTOPPIN NTERNAL 2 AL VALUE 40.00 0. 0. 0. 0. 0. 0. 0.	RATIO 0.6 99 13.1 366 15.5 7 ** 346.7 15.5 G/BREACH TIME STE SPI	2 RATIO 0 0.4 7 13.3 0 14.3 3 347.4 0 14.3 3 347.4 0 14.3 3 347.5 0 14.3 3 347.5 0 14.3 3 346.50 9. 30. 30. AXIMUM	3 RATI(59 0. 4. 19 17 13 33 13 50 348 33 13 50 348 33 13 50 348 33 13 50 348 33 13 50 348 33 13 50 348 33 13 50 0 DURATI(A RAT 779 388. 317 1. 399. 383 1. 399. 383 1. 399. 383 1. 399. 31. 399. 351.0 22 351.0 2501 0N T	0.88 251. 3.00 197. 3.67 3.67 3.67 3.67 DUTFLW RMATION) AM 0.	1.00 328. 13.00 278. 13.50 349.43 13.50
7 38 OU ***) RUNOFF OPERATION NYDROGRAPH AT ROUTED TO	UTFLW ALSO COMPUTE STATION F OUTFLW OUTFLW RATI	AI : : 	REA 1.00 1.00 SU (PEAKS ELEV STOF OUTP MAXIM RESERV	PLAN	FLOW FIME FLOW TIME EAK STAGE: STAGE TIME OF DAM OVI ARE FOR II INITI: 3. MAXIMUM DEPTH	RATIO 1 0.46 42. 13.33 22. 15.00 ERTOPPINN NTERNAL ' AL VALUE 40.00 0. 0. MAXII STOR	RATIO 0.6 99 13.1 36 15.5 T ** 346.7 5.5 G/BREACH TIME STE SPI	2 RATIO 0 0.4 7 13.5 8 0 14.5 3 347.4 0 14.5 3 347.4 3 347.4 0 14.5 3 347.4 3 347.4	3 RATIC 59 0. 4. 19 17 13 33 13 50 348 33 13 50 348 33 13 50 5 FOR ST DURATIC OVER TO DURATIC	 A RAT 779 788. 79 88. 88. 117 113 39. 39. 88.3 11. 118 344 88.3 11. 118 344 88.3 11. 118 344 88.3 11. 11.<	0.88 251. 3.00 197. 3.67 3.67 3.67 0UTFLW RMATION) AM 0.	1.00 328. 13.00 278. 13.50 349.43 13.50 TIME OF FAILURE
7 38 OU (***) RUNOFF OPERATION NYDROGRAPH AT ROUTED TO	UTFLW ALSO COMPUTE STATION F MAIN OUTFLW RATI OF PMF 0.46	A1 : : 	REA 1.00 1.00 SU (PEAKS ELEV STOF OUTP MAXIM RESERV	PLAN	FLOW FIME FLOW TIME EAK STAGE: STAGE TIME OF DAM OVI ARE FOR II INITI: 3. MAXIMUM DEPTH	RATIO 1 0.46 42. 13.33 22. 15.00 ERTOPPINN NTERNAL ' AL VALUE 40.00 0. 0. MAXII STOR	RATIO 0.6 99 13.1 36 15.5 T ** 346.7 5.5 G/BREACH TIME STE SPI	2 RATIO 0 0.4 7 13.5 8 0 14.5 3 347.4 0 14.5 3 347.4 3 347.4 0 14.5 3 347.4 3 347.4	3 RATIC 59 0. 4. 19 17 13 33 13 50 348 33 13 50 348 33 13 50 5 FOR ST DURATIC OVER TO DURATIC	 A RAT 779 788. 79 88. 88. 117 113 39. 39. 88.3 11. 118 344 88.3 11. 118 344 88.3 11. 118 344 88.3 11. 11.<	0.88 251. 3.00 197. 3.67 3.67 3.67 0UTFLW RMATION) AM 0.	1.00 328. 13.00 278. 13.50 349.43 13.50 TIME OF FAILURE
7 38 OU ***) RUNOFF OPERATION NYDROGRAPH AT ROUTED TO	UTFLW ALSO COMPUTE STATION F MAIN OUTFLW RATI OF PMF 0.46 0.60	A1 : : 	REA 1.00 1.00 SU (PEAKS ELEV STOF OUTP MAXIM RESERV	PLAN	FLOW FIME FLOW TIME EAK STAGE: STAGE TIME OF DAM OVI ARE FOR II INITI: 3. MAXIMUM DEPTH	RATIO 1 0.46 42. 13.33 22. 15.00 ERTOPPINN NTERNAL ' AL VALUE 40.00 0. 0. MAXII STOR	RATIO 0.6 99 13.1 36 15.5 T ** 346.7 5.5 G/BREACH TIME STE SPI	2 RATIO 0 0.4 7 13.5 8 0 14.5 3 347.4 0 14.5 3 347.4 3 347.4 0 14.5 3 347.4 3 347.4	3 RATIC 59 0. 4. 19 17 13 33 13 50 348 33 13 50 348 33 13 50 5 FOR ST DURATIC OVER TO DURATIC	 A RAT 779 788. 79 88. 88. 117 113 39. 39. 88.3 11. 118 344 88.3 11. 118 344 88.3 11. 118 344 88.3 11. 11.<	0.88 251. 3.00 197. 3.67 3.67 3.67 0UTFLW RMATION) AM 0.	1.00 328. 13.00 278. 13.50 349.43 13.50 TIME OF FAILURE
7 38 OU (***) RUNOFF OPERATION HYDROGRAPH AT ROUTED TO	UTFLW ALSO COMPUTE STATION F OUTFLW OUTFLW RATII OF PMF 0.46 0.69 0.69	A1 : : 	REA 1.00 1.00 SU (PEAKS ELEV STOF OUTP MAXIM RESERV	PLAN	FLOW FIME FLOW TIME EAK STAGE: STAGE TIME OF DAM OVI ARE FOR II INITI: 3. MAXIMUM DEPTH	RATIO 1 0.46 42. 13.33 22. 15.00 ERTOPPINN NTERNAL ' AL VALUE 40.00 0. 0. MAXII STOR	RATIO 0.6 99 13.1 36 15.5 T ** 346.7 5.5 G/BREACH TIME STE SPI	2 RATIO 0 0.4 7 13.5 8 0 14.5 3 347.4 0 14.5 3 347.4 3 347.4 0 14.5 3 347.4 3 347.4	3 RATIC 59 0. 4. 19 17 13 33 13 50 348 33 13 50 348 33 13 50 5 FOR ST DURATIC OVER TO DURATIC	 A RAT 779 788. 79 88. 88. 117 113 39. 39. 88.3 11. 118 344 88.3 11. 118 344 88.3 11. 118 344 88.3 11. 11.<	0.88 251. 3.00 197. 3.67 3.67 3.67 0UTFLW RMATION) AM 0.	1.00 328. 13.00 278. 13.50 349.43 13.50 TIME OF FAILURE
7 38 OU (***) RUNOFF OPERATION HYDROGRAPH AT ROUTED TO	UTFLW ALSO COMPUTE STATION F MAIN OUTFLW RATI OF PMF 0.46 0.60	A1 : : 	REA 1.00 1.00 SU (PEAKS ELEV STOF OUTP MAXIM RESERV	PLAN	FLOW FIME FLOW FIME SAK STAGE STAGE DF DAM OVI ARE FOR IN INITI 3. MAXIMUM DEPTH	RATIO 1 0.46 42. 13.33 22. 15.00 ERTOPPINN NTERNAL ' AL VALUE 40.00 0. 0. MAXII STOR	RATIO 0.6 99 13.1 36 15.5 T ** 346.7 5.5 G/BREACH TIME STE SPI	2 RATIO 0 0.4 7 13.5 8 0 14.5 3 347.4 0 14.5 3 347.4 3 347.4 0 14.5 3 347.4 3 347.4 34	3 RATIC 59 0. 4. 19 17 13 33 13 50 348 33 13 50 348 33 13 50 5 FOR ST DURATIC OVER TO DURATIC	 A RAT 779 788. 79 88. 88. 117 113 39. 39. 88.3 11. 118 344 88.3 11. 118 344 88.3 11. 118 344 88.3 11. 11.<	D.88 251. 3.00 197. 3.67 3.74 3 3.67 JUTFLW RMATION) AM D D	1.00 328. 13.00 278. 13.50 349.43 13.50 TIME OF FAILURE

*** NORMAL END OF HEC-1 ***

Case 3

INPUT LINE NO. 7

> 41 38

> 44

54 52

55 (***)

LINE 1						5 .C. – E				9		
2						N CONTRO				MENT		
3	IO	5	5									
4	*DI IT	AGRAM 10			200			2000				
5	IN	10		000	200			2000				
6	JR	PREC	0.46	0.60	0.69	0.79	0.88	1.00				
7	KK	MAIN	-			0.1						
8 9	KO KM	5 WATERSH	1 FD 1			21						
10	PB	4	100 1									
11	PC	.00100	0.00200	0.00300	0.00400	0.00500	0.00600	0.00700	0.00800	0.00900	0.01000	
12	PC					0.01500						
13 14	PC PC					0.02519						
15	PC					0.04969						
16	PC	.05821	0.05968	0.06117	0.06267	0.06419	0.06572	0.06727	0.06883	0.07041	0.07200	
17	PC					0.08063						
18 19	PC PC					0.10163						
20	PC					0.16594						
21	PC	.19402	0.19928	0.20478	0.21052	0.21650	0.22272	0.22918	0.23588	0.24282	0.25000	
22	PC					0.29800						
23 24	PC PC					0.70200						
25	PC					0.83406						
26	PC	.85794	0.86152	0.86498	0.86833	0.87156	0.87468	0.87768	0.88057	0.88334	0.88600	
27 28	PC PC					0.89838						
28 29	PC					0.91938						
30	PC	.94469	0.94612	0.94753	0.94893	0.95031	0.95168	0.95303	0.95437	0.95569	0.95700	
31	PC					0.96336						
32 33	PC PC					0.97523						
34	PC					0.99561						
35	BA	1										
36	LS		73.75									
37 38	UD KK	1 INFLOW										
39	KM		TO STORA	GE BASIN								
40	KO	5	5			21						
41	DT	BYPASS	1.0		5.0	0.0	100	100	200			
42 43	DI DQ	0	10 10	20 20	50 40	80 55	100 65	180 120	300 230			
44	KK	OUTFLW	10	20	10	00	00	120	200			
45	KO	5	5			21						
46 47	RS SA	1	ELEV 0.83	340 2.17	2.45	2.74	3.04	3.36				
48	SE	340	342	344	346	348	350	352				
49	SL	340	2.34	.61	.5							
50	SS	348	10	3.337	1.5							
51 52	ST KK	351 RETURN	10	3.1	1.5							
53	KO	5	5			21						
54	DR	BYPASS										
55 56	KK	SUM 5	5			21						
57	KO HC	2	5			21						
58	ZZ	-										
S	CHEMATIC DI	AGRAM OF	F STREAM	NETWORK								
(V) RC	DUTING	(->) DIVER	RSION OR	PUMP FL	WC						
	NNECTOR					R PUMPED	FLOW					
MAIN	1											
	> E	BYPASS										
INFLOW	1											
V												
V OUTFLW												
	-											
			BYPAS	SS								
	RETUR	<in .<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></in>										
	1											

Case 3 Continued

					RA	TTOS APPL	IED TO PR	ECTPTTATT	ON	
OPERATION	STATION	AREA	PLAN		RATIO 1	RATIO 2	RATIO 3	RATIO 4	RATIO 5	RATIO 6
HYDROGRAPH AT					0.46	0.60	0.69	0.79	0.88	1.00
+	MAIN	1.00	1	FLOW	42.	99.	144.	198.	251.	328.
DIVERSION TO				TIME	13.33	13.17	13.17	13.17	13.00	13.00
+	BYPASS	1.00	1	FLOW	35.	64.	95.	137.	185.	256.
HYDROGRAPH AT				TIME	13.33	13.17	13.17	13.17	13.00	13.00
+	INFLOW	1.00	1	FLOW	7.	34.	49.	62.	66.	72.
ROUTED TO				TIME	13.33	13.17	13.17	13.17	13.00	13.00
+	OUTFLW	1.00	1	FLOW	7.	19.	22.	25.	27.	28.
				TIME	13.33	14.00	14.33	14.83	15.17	15.50
				PEAK ST						
			1	STAGE	340.40	342.74	343.79	344.75	345.41	346.19
				TIME	13.33	14.00	14.33	14.83	15.17	15.50
HYDROGRAPH AT										
+	RETURN	0.00	1	FLOW	35.	64.	95.	137.	185.	256.
				TIME	13.33	13.17	13.17	13.17	13.00	13.00
2 COMBINED AT										
+	SUM	1.00	1	FLOW	42.	81.	114.	158.	208.	278.
				TIME	13.33	13.17	13.17	13.17	13.17	13.00

SUMMARY OF DAM OVERTOPPING/BREACH ANALYSIS FOR STATION OUTFLW (PEAKS SHOWN ARE FOR INTERNAL TIME STEP USED DURING BREACH FORMATION)

PLAN 1			INITIAL	. VALUE	SPILLWAY CR	EST TOP	OF DAM	
		ELEVATION	340	.00	348.00		351.00	
		STORAGE		0.	13.		22.	
		OUTFLOW		0.	32.		211.	
	RATIO	MAXIMUM	MAXIMUM	MAXIMUM	MAXIMUM	DURATION	TIME OF	TIME O
	OF	RESERVOIR	DEPTH	STORAGE	OUTFLOW	OVER TOP	MAX OUTFLOW	FAILUR
	PMF	W.S.ELEV	OVER DAM	AC-FT	CFS	HOURS	HOURS	HOURS
	0.46	340.40	0.00	0.	7.	0.00	13.33	0.00
	0.60	342.74	0.00	1.	19.	0.00	14.00	0.00
	0.69	343.79	0.00	3.	22.	0.00	14.33	0.00
	0.79	344.75	0.00	5.	25.	0.00	14.83	0.00
	0.88	345.41	0.00	7.	27.	0.00	15.17	0.00
	1.00	346.19	0.00	9.	28.	0.00	15.50	0.00

*** NORMAL END OF HEC-1 ***

1

Case 4

					HEC-1	тырит						PAGE	1
LINE	ID.						6		8	9 .	10	FAGE	T
1	ID	RALPH (G. MASTRO	OMONACO,	P.E., P	.C E	XTENTION	BASIN RE	ESEARCH				
2				FION BASE	IN CONTRO	OL SYSTE	M - AFTER	R DEVELOI	PMENT				
3	IO *DT	5 AGRAM	5										
4	IT	AGRAM 10			200			2000					
5	IN	- 6		000	200			2000					
6	JR	PREC	0.46	0.60	0.69	0.79	0.88	1.00					
7	KK	MAIN											
8	KO	5	5			21							
9		WATERSH											
10 11	PB PC	4		0 00200	0 00400	0 00500	0 00000	0 00700	0 00000	0.00900	0 01000		
12										0.01900			
13										0.02961			
14										0.04171			
15	PC									0.05531			
16	PC									0.07041			
17 18	PC PC									0.08843			
18	PC PC									0.11143 0.14206			
20	PC									0.14206			
21	PC									0.24282			
22	PC									0.41600			
23	PC									0.74224			
24	PC									0.80598			
25	PC									0.85044			
26 27	PC PC									0.88334			
28	PC									0.92638			
29	PC									0.94179			
30	PC	.94469	0.94612	0.94753	0.94893	0.95031	0.95168	0.95303	0.95437	0.95569	0.95700		
31	PC									0.96824			
32	PC									0.97967			
33	PC PC									0.98997 0.99914			
34 35	BA	.99189	0.99284	0.99377	0.99470	0.99501	0.99631	0.99/40	0.99828	0.99914	1.00000		
36	LS	-	73.75										
37	UD	1											
38		LOFLOW											
39			TO STORA	GE BASIN									
40 41	KO DT	5	5			21							
41 42	DT	BYPASS 0	10	20	50	80	100	180	300				
43	DO	0	10	20	40	55	65	120	237				
44	KK	OUTFLW											
45	KO	5	5			21							
46	RS	1	ELEV										
47	SA	0	0.83	2.17	2.45	2.74		3.36					
48 49	SE SL	340 340	342 1.4	344	346	348	350	352					
50	SS	345.5	1.4	3.337	1.5								
51	ST	351	10	3.1	1.5								
52		RETURN											
53			DIVERTE										
54	KO	5	5			21							
55 56	KK	BYPASS THRU											
57		DIVERT	FIRST F	FLUSH TO-	-WO BASTI	V - USE I	MAX. VOLU	IME TO L	INTT DIV	ERSTON			
58	KO	5	2		112 211011	21				1.0101			
59	DT	TO-WQ	5.33										
60	DI	0	10	20		80	100	180	300				
61	DQ	0	10	20	50	80	100	180	300				
62	KK	SUM	-			21							
63 64	KO HC	5	5			21							
65		ZEXMAIN											
66	KO	5				21							
67			HED 1 - 1	PRE-DEVE	LOPMENT								
68	BA	1											
69	LS		70.75										
70 71	UD ZZ	1											
/ 1	22												

Case 4 Continued

TNPUT	JOINER	ATIC DIAGRA			OPK					
LINE NO.	(V) ROUTING (.) CONNECT	; for			N OR PUMP FLO F DIVERTED OR	W PUMPED F	LOW			
7	MAIN.									
41		> BYPAS	20							
38	LOFLOW V	BIFAS	55							
44	V OUTFLW									
55	•	.<		BYPASS						
52	-	RETURN		211100						
59			>	TO-WQ						
56	•	THRU .								
62 65	SUM	EXMAIN								
JR	F 0.		PRECIPI .60 AGE (EN)	0.69 D-OF-PERIC	0.79 DD) SUMMARY F FEET PER SEC TIME TO PEA	OR MULTIP OND, ARE K IN HOUR	LE PLAN-R A IN SQUA S	RE MILES		UTATIONS
	STATIC	ON AREA	A PL	AN	RATIO 1	RATIO 2		RATIO 4		
HYDROGRAPH		IN 1.0	00 :	l FLOW TIME	42. 13.33	99. 13.17	144. 13.17	198. 13.17	251. 13.00	328. 13.00
DIVERSION		SS 1.0	00 :	1 FLOW TIME	35. 13.33	64. 13.17	95. 13.17	138. 13.17	190. 13.00	264. 13.00
HYDROGRAPH		DW 1.0	00 :	1 FLOW TIME	7. 13.33	34. 13.17	49. 13.17	60. 13.17	62. 13.00	64. 13.00
ROUTED TO	OUTFI	LW 1.0	00 :	1 FLOW TIME					26. 15.17	
					TAGES IN FEET 340.86 13.67	343.31			345.99 15.17	
HYDROGRAPH										
	AT									
		RN 0.0	00 :	1 FLOW TIME					190. 13.00	
	RETUP TO	RN 0.0		TIME 1 FLOW	13.33	13.17	13.17	13.17	13.00	13.00
	RETUR TO TO-V			TIME	13.33	13.17	13.17	13.17		13.00
	RETUR TO TO-V AT	WQ 0.0	00 :	TIME 1 FLOW	13.33 35. 13.33 22.	13.17 64. 13.17 60.	13.17 93. 13.00 95.	13.17 104. 12.67 138.	13.00 104. 12.50	13.00 98. 12.50 264.
HYDROGRAPH	RETUR TO TO-W AT THE	WQ 0.0	00 :	TIME 1 FLOW TIME 1 FLOW	13.33 35. 13.33 22.	13.17 64. 13.17 60.	13.17 93. 13.00 95.	13.17 104. 12.67 138.	13.00 104. 12.50 190.	13.00 98. 12.50 264.
	RETUR TO TO-V AT THE D AT	wQ 0.0 RU 0.0	00 : 00 :	TIME 1 FLOW TIME 1 FLOW TIME	13.33 35. 13.33 22.	13.17 64. 13.17 60. 13.50	13.17 93. 13.00 95. 13.17	13.17 104. 12.67 138. 13.17	13.00 104. 12.50 190. 13.00	13.00 98. 12.50 264. 13.00
1 2 COMBINE	RETUH TO TO-V AT THE D AT SU	พ่ญ 0.0 ณ 0.0 ภพ 1.0	00 : 00 :	TIME 1 FLOW TIME 1 FLOW TIME 1 FLOW TIME 1 FLOW	13.33 35. 13.33 22. 14.83 24. 14.83 27.	13.17 64. 13.17 60. 13.50 72. 13.50 72.	13.17 93. 13.00 95. 13.17 107. 13.17 111.	13.17 104. 12.67 138. 13.17 151. 13.17 161.	13.00 104. 12.50 190. 13.00 203. 13.17 209.	13.00 98. 12.50 264. 13.00 278. 13.00 278.
2 COMBINE	RETUH TO TO-V AT THE D AT SU	WQ 0.0 RU 0.0 JM 1.0 IN 1.0	00 : 00 : 00 : SUMM	TIME 1 FLOW TIME 1 FLOW TIME 1 FLOW TIME ARY OF DAN	13.33 35. 13.33 22. 14.83 24. 14.83	13.17 64. 13.17 60. 13.50 72. 13.50 72. 13.17 /BREACH A	13.17 93. 13.00 95. 13.17 107. 13.17 111. 13.17 NALYSIS F	13.17 104. 12.67 138. 13.17 151. 13.17 161. 13.17 OR STATIC	13.00 104. 12.50 190. 13.00 203. 13.17 209. 13.17 0.UTFL	13.00 98. 12.50 264. 13.00 278. 13.00 278. 13.17 ₩
1 YDROGRAPH 2 COMBINE HYDROGRAPH	RETUH TO TO-V AT THE D AT SU	wQ 0.0 RU 0.0 JM 1.0 IN 1.0 	00 :: 00 :: 00 :: SUMM	TIME TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME ARY OF DAN OWN ARE FC IN TIME	13.33 35. 13.33 22. 14.83 24. 14.83 24. 14.83 27. 13.33 4 OVERTOPPING	13.17 64. 13.17 60. 13.50 72. 13.50 72. 13.17 /BREACH A IME STEP SPILL	13.17 93. 13.00 95. 13.17 107. 13.17 111. 13.17 NALYSIS F USED DUR	13.17 104. 12.67 138. 13.17 151. 13.17 161. 13.17 161. ING BREAC TOP 3	13.00 104. 12.50 190. 13.00 203. 13.17 209. 13.17 NO UTFL H FORMATI	13.00 98. 12.50 264. 13.00 278. 13.00 278. 13.17 ₩
1 YDROGRAPH 2 COMBINE HYDROGRAPH	RETUI TO TO-I AT THE D AT SU AT EXMAN	WQ 0.0 RU 0.0 JM 1.0 IN 1.0 	00 : 00 : 00 : SUMMA EAKS SHO ELEVAT STORAGI OUTFLO	TIME TIME FLOW FIME FLOW FIME FLOW FIME FLOW FIME FLOW FIME FLOW FUE	13.33 35. 13.33 22. 14.83 24. 14.83 4 OVERTOPPING DR INTERNAL T UITIAL VALUE 340.00 0. 0.	13.17 64. 13.17 60. 13.50 72. 13.50 72. 13.17 /BREACH A IME STEP SPILL	13.17 93. 13.00 95. 13.17 107. 13.17 111. 13.17 NALYSIS F USED DUR WAY CREST 345.50 7. 16.	13.17 104. 12.67 138. 13.17 151. 13.17 161. 13.17 OR STATIC ING BREAC TOP 3	13.00 104. 12.50 190. 13.00 203. 13.17 209. 13.17 209. 13.17 CM OUTFL CH FORMATI OF DAM 151.00 22. 367.	13.00 98. 12.50 264. 13.00 278. 13.00 278. 13.17 W ON)
1 YDROGRAPH 2 COMBINE HYDROGRAPH	RETUR TO TO-V AT THE D AT SU AT EXMAN	NQ 0.0 RU 0.0 JM 1.0 IN 1.0 	DO : DO : DO : SUMML CAKS SH ELEVAT: STORAGI OUTFLOI MAXIMUM SSERVOI N.S.ELEY	TIME TIME FLOW TIME FLOW TIME FLOW TIME ARY OF DAN ONN ARE FC IN IN IN IN IN IN IN IN IN IN	13.33 35. 13.33 22. 14.83 24. 14.83 24. 14.83 27. 13.33 4 OVERTOPPING 0R INTERNAL T 13.33 4 OVERTOPPING 340.00 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	13.17 64. 13.17 60. 13.50 72. 13.50 72. 13.17 /BREACH A IME STEP SPILL UM MAX GE OUT T C	13.17 93. 13.00 95. 13.17 107. 13.17 111. 13.17 NALYSIS F USED DUR WAY CREST 345.50 7. 16. SIMUM D FLOW O FS	13.17 104. 12.67 138. 13.17 151. 13.17 161. 13.17 OR STATIC ING BREAC TOP 3 URATION VER TOP HOURS	13.00 104. 12.50 190. 13.00 203. 13.17 209. 13.17 209. 13.17 209. 13.17 209. 13.17 209. 13.17 209. 13.17 209. 13.17 209. 13.17 209. 13.17 201. 13.00 203. 13.17 205. 13.00 203. 13.17 205. 13.17 205. 13.17 207. 13.17 207. 13.17 208. 13.17 209. 13.17 207. 13.17 208. 13.17 209. 13.17 209. 13.17 209. 13.17 209. 13.17 209. 13.17 209. 13.17 201. 13.00 203. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 205. 13.17 205. 205	13.00 98. 12.50 264. 13.00 278. 13.00 278. 13.17 W ON) F TIME LOW FAILU HOUR
1 2 COMBINE 2 COMBINE HYDROGRAPH	RETUR TO TO-V AT THE D AT SU AT EXMAN	NQ 0.0 RU 0.0 JM 1.0 IN 1.0 	DO : DO : DO : SUMML CAKS SH ELEVAT: STORAGI OUTFLOI MAXIMUM SSERVOI N.S.ELEY	TIME TIME FLOW TIME FLOW TIME FLOW TIME ARY OF DAN ONN ARE FC IN IN IN IN IN IN IN IN IN IN	13.33 35. 13.33 22. 14.83 24. 14.83 24. 14.83 27. 13.33 4 OVERTOPPING 0R INTERNAL T 13.33 4 OVERTOPPING 340.00 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	13.17 64. 13.17 60. 13.50 72. 13.50 72. 13.17 /BREACH A IME STEP SPILL UM MAX GE OUT T C	13.17 93. 13.00 95. 13.17 107. 13.17 111. 13.17 NALYSIS F USED DUR WAY CREST 345.50 7. 16. SIMUM D FLOW O FS	13.17 104. 12.67 138. 13.17 151. 13.17 161. 13.17 OR STATIC ING BREAC TOP 3 URATION VER TOP HOURS	13.00 104. 12.50 190. 13.00 203. 13.17 209. 13.17 209. 13.17 209. 13.17 209. 13.17 209. 13.17 209. 13.17 209. 13.17 209. 13.17 209. 13.17 201. 13.00 203. 13.17 205. 13.00 203. 13.17 205. 13.17 205. 13.17 207. 13.17 207. 13.17 208. 13.17 209. 13.17 207. 13.17 208. 13.17 209. 13.17 209. 13.17 209. 13.17 209. 13.17 209. 13.17 209. 13.17 201. 13.00 203. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 205. 13.17 205. 205	13.00 98. 12.50 264. 13.00 278. 13.00 278. 13.17 W ON) F TIME LOW FAILU HOUR
HYDROGRAPH 2 COMBINE HYDROGRAPH	RETUR TO TO-V AT THE D AT SU AT EXMAN	NQ 0.0 RU 0.0 JM 1.0 IN 1.0 	DO : DO : DO : SUMML CAKS SH ELEVAT: STORAGI OUTFLOI MAXIMUM SSERVOI N.S.ELEY	TIME TIME FLOW TIME FLOW TIME FLOW TIME ARY OF DAN ONN ARE FC IN IN IN IN IN IN IN IN IN IN	13.33 35. 13.33 22. 14.83 24. 14.83 24. 14.83 27. 13.33 4 OVERTOPPING 0R INTERNAL T 13.33 4 OVERTOPPING 340.00 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	13.17 64. 13.17 60. 13.50 72. 13.50 72. 13.17 /BREACH A IME STEP SPILL UM MAX GE OUT T C	13.17 93. 13.00 95. 13.17 107. 13.17 111. 13.17 NALYSIS F USED DUR WAY CREST 345.50 7. 16. SIMUM D FLOW O FS	13.17 104. 12.67 138. 13.17 151. 13.17 161. 13.17 OR STATIC ING BREAC TOP 3 URATION VER TOP HOURS	13.00 104. 12.50 190. 13.00 203. 13.17 209. 13.17 209. 13.17 209. 13.17 209. 13.17 209. 13.17 209. 13.17 209. 13.17 209. 13.17 209. 13.17 201. 13.00 203. 13.17 205. 13.00 203. 13.17 205. 13.17 205. 13.17 207. 13.17 207. 13.17 208. 13.17 209. 13.17 207. 13.17 208. 13.17 209. 13.17 209. 13.17 209. 13.17 209. 13.17 209. 13.17 209. 13.17 201. 13.00 203. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 205. 13.17 205. 205	13.00 98. 12.50 264. 13.00 278. 13.00 278. 13.17 W ON) F TIME LOW FAILU HOUR
HYDROGRAPH	RETUR TO TO-V AT THE D AT SU AT EXMAN	NQ 0.0 RU 0.0 JM 1.0 IN 1.0 	DO : DO : DO : SUMML CAKS SH ELEVAT: STORAGI OUTFLOI MAXIMUM SSERVOI N.S.ELEY	TIME TIME FLOW TIME FLOW TIME FLOW TIME ARY OF DAN ONN ARE FC IN IN IN IN IN IN IN IN IN IN	13.33 35. 13.33 22. 14.83 24. 14.83 24. 14.83 27. 13.33 4 OVERTOPPING 0R INTERNAL T VITIAL VALUE 340.00 0. 0. 0. 0.	13.17 64. 13.17 60. 13.50 72. 13.50 72. 13.17 /BREACH A IME STEP SPILL UM MAX GE OUT T C	13.17 93. 13.00 95. 13.17 107. 13.17 111. 13.17 NALYSIS F USED DUR WAY CREST 345.50 7. 16. SIMUM D FLOW O FS	13.17 104. 12.67 138. 13.17 151. 13.17 161. 13.17 OR STATIC ING BREAC TOP 3 URATION VER TOP HOURS	13.00 104. 12.50 190. 13.00 203. 13.17 209. 13.17 209. 13.17 209. 13.17 209. 13.17 209. 13.17 209. 13.17 209. 13.17 209. 13.17 209. 13.17 201. 13.00 203. 13.17 205. 13.00 203. 13.17 205. 13.17 205. 13.17 207. 13.17 207. 13.17 208. 13.17 209. 13.17 207. 13.17 208. 13.17 209. 13.17 209. 13.17 209. 13.17 209. 13.17 209. 13.17 209. 13.17 201. 13.00 203. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 13.17 205. 205. 13.17 205. 205	13.00 98. 12.50 264. 13.00 278. 13.00 278. 13.17 W ON) F TIME LOW FAILU HOUR

*** NORMAL END OF HEC-1 ***